

٠

(DOK 1) I can...

F.IF.6 (DOK 2)

the relationship.

Sketch graphs showing key features of a function that models a

relationship between two quantities from a given verbal description of

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*(Modeling standard)	 Recognize slope as an average rate of change. Calculate the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a linear or exponential graph (DOK 2) I can Interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval.
F.IF.7a (DOK 1) Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*(Modeling standard) a. Graph linear and quadratic functions and show intercepts, maxima, and minima.	 (DOK 1) I can Graph linear functions by hand in simple cases or using technology for more complicated cases and show/label intercepts of the graph.
F.IF.7b (DOK 2) Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*(Modeling standard) b. Graph square root, cube root, and piecewise- defined functions, including step functions and absolute value functions	 (DOK 1) I can Graph square root, cube root, and piecewise defined functions, including step functions and absolute value functions, by hand in simple cases or using technology for more complicated cases, and show/label key features of the graph. (DOK 2) I can Determine the difference between simple and complicated linear, quadratic, square root, cube root, and piecewise-defined functions, including step functions and absolute value functions and know when the use of technology is appropriate. Compare and contrast the domain and range of absolute value, step and piece-wise defined functions with linear, quadratic, and exponential.
F.IF.8a (DOK 2) Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	 (DOK 1) I can Identify different forms of a quadratic expression. Write functions in equivalent forms using the process of factoring Identify zeros, extreme values, and symmetry of the graph of a quadratic function (DOK 2) I can Interpret different but equivalent forms of a function defined by an expression in terms of a context Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context
F.LE.1a (DOK 2) Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals; and that exponential functions grow by equal factors over equal intervals.	 (DOK 1) I can Recognize that linear functions grow by equal differences over equal intervals. Recognize that exponential functions grow by equal factors over equal intervals. (DOK 2) I can

	 Distinguish between situations that can be modeled with linear functions and with exponential functions to solve mathematical and real-world problems. Prove that linear functions grow by equal differences over equal intervals. Prove that exponential functions grow by equal factors over equal intervals.
A.REI.4a (DOK 2) Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)2 = q$ that has the same solutions. Derive the quadratic formula from this form.	 (DOK 1) I can Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x-p)² = q that has the same solutions. Solve quadratic equations in one variable (DOK 2) I can Derive the quadratic formula by completing the square on a quadratic equation in x.
A.REI.4b (DOK 2) Solve quadratic equations in one variable. b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b	 (DOK 1) I can Solve quadratic equations by inspection (e.g., for x² = 49), taking square roots, completing the square, the quadratic formula and factoring Express complex solutions as a ± bi for real numbers solutions as a and b. (DOK 2) I can Determine appropriate strategies (see first knowledge target listed) to solve problems involving quadratic equations, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions.
A.REI.7 (DOK 1) Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.	 (DOK 1) I can Transform a simple system consisting of a linear equation and a quadratic equation in 2 variables so that a solution can be found algebraically and graphically. (DOK 2) I can Explain the correspondence between the algebraic & graphical solutions to a simple system consisting of a linear equation and a quadratic equation in 2 variables.
A.REI.11 (DOK 2) Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.* (Modeling standard)	 (DOK 1) I can Recognize and use function notation to represent linear and exponential equations Recognize that if (x1, y1) and (x2, y2) share the same location in the coordinate plane that x1 = x2 and y1 = y2. Recognize that f(x) = g(x) means that there may be particular inputs of f and g for which the outputs of f and g are equal.

	(DOK 2) I can
	• Explain why the x-coordinates of the points where the graph of the
	equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equations
	f(x) = g(x). (Include cases where $f(x)$ and/or $g(x)$ are linear and
	exponential equations
S.ID.2 (DOK 2)	(DOK 1) I can
Use statistics appropriate to the shape of the data distribution to compare	Choose a summary statistic appropriate to the characteristics of the
center (median, mean) and spread (interquartile range, standard deviation) of	data distribution such as the shape of the distribution or the existence
two or more different data sets. (Statistics and Probability is a Modeling	of extreme data points
Conceptual Category.)	(DOK 2) I can
	• Choose the appropriate measure for center (mean, median) and spread
	(interquartile range, standard deviation) based on the shape of a data
	distribution.
	• Use appropriate statistics for center and spread to compare two or
	more data sets.
S.ID.3 (DOK 2)	(DOK 1) I can
Interpret differences in shape, center and spread in the context of data sets,	• Define "the context of data sets" as meaning the specific nature of the
accounting for possible effects of extreme data points (outliers). (Statistics	attributes under investigation.
and Probability is a Modeling Conceptual Category.)	(DOK 2) I can
	• Interpret differences in shape, center and spread in the context of data
	sets.
	• Describe the possible effects the presence of outliers in a set of data
	can have on shape, center, and spread in the context of the data sets.
S.ID.5 (DOK 2)	(DOK I) I can
Interpret relative frequencies in the context of the date (including joint	• Recognize the differences between joint, marginal and conditional
matrial and conditional relative frequencies). Recognize possible	Coloulete relative frequencies including joint marginal and
associations and trends in the data (Statistics and Probability is a Modeling	Calculate relative frequencies including joint, marginal and conditional relative frequencies
Conceptual Category)	Summerize entegorical data for two entegories in two way
	frequency tables
	(DOK 2) L can
	• Interpret relative frequencies in the context of the data.
	 Recognize possible associations and trends in the data
N RN 2 (DOK 1)	(DOK 1) I can
Rewrite expressions involving radicals and rational exponents using the	• Using the properties of exponents, rewrite a radical expression as an
properties of exponents.	expression with a rational exponent.
	• Using the properties of exponents, rewrite an expression with a rational
	exponent as a radical expression
N.RN.3 (DOK 2)	(DOK 1) I can
Explain why the sum or product of two rational numbers is rational; that the	• Find the sums and products of rational and irrational numbers.
sum of a rational number and an irrational number is irrational; and that the	Recognize that the sum of a rational number and an irrational number

product of a nonzero rational number and an irrational number is irrational.	 is irrational. Recognize that the product of a nonzero rational number and an irrational number is irrational. (DOK 2) I can Explain why rational numbers are closed under addition or multiplication
A.CED.2 (DOK 2)	(DOK 1) I can
Create equations in two or more variables to represent relationships between quantities, graph equations on a coordinate axes with labels and scales	 Identify the quantities in a mathematical problem or real world situation that should be represented by distinct variables and describe what quantities the variables represent. Graph one or more created equation on a coordinate axes with appropriate labels and scales. (DOK 2) I can Create at least two equations in two or more variables to represent relationships between quantities Justify which quantities in a mathematical problem or real-world situation are dependent and independent of one another and which operations represent those relationships. Determine appropriate units for the labels and scale of a graph depicting the relationship between equations created in two or more variables.